Modeling of Asphaltene and other Heavy Organic Depositions

G. Ali Mansoori

University of Illinois at Chicago, (M/C 063) Chicago, IL 60607-7052, USA, Email: mansoori@uic.edu

Abstract

Well-head production of petroleum can be significantly affected by flocculation, deposition, and plugging of asphaltene, paraffin/wax, and/or diamondoid inside the well. The economic implications of such a formation damage are tremendous. In this paper a comprehensive mechanism and predictive model for such compounds in oil wells is presented. This model is based on the macromolecular theory of polydisperse polymer and colloidal solutions, kinetics of aggregation, electrokinetic transport phenomena, and phase behavior of multicomponent mixtures.

One question of interest in the oil industry is “when” and “how much” heavy organics will flocculate out under certain conditions. Since a petroleum crude generally consists of a mixture of light and heavy hydrocarbons and heavy organics it may be necessary to look at this problem from a more fundamental point of view than it has been the practice in the past. In this paper the author presents the cause-and-effect mechanisms of such depositions and introduces mathematical models to be used for preventive measures in various cases of petroleum production, transportation, and processing.

With the application of the proposed model a number of predictive case studies are made. It is shown that with proper planning in the production scheme, consideration of the characteristics of the producing petroleum, injection fluid, well casing, and the reservoir it is possible to choose a formation-damage-free production scheme.

Keywords: asphaltene; paraffin; wax; resin; fractal aggregation; phase behavior; statistical mechanics

1. Introduction

The need for understanding the nature of heavy organics (asphaltenes, asphalts, bitumens, resins, diamondoids) present in crude oil and their role in the production and processing of petroleum is well recognized around the world as manifested by the extensive related research and experimental activities under way at various research centers (David, 1973; Lichaa, 1977; Mansoori and Jiang, 1985; Mansoori, 1988). It appears certain that the trend in the oil industry, worldwide, necessarily will be and has already started towards the exploration, drilling, production and processing of lower-quality crude and use of secondary and tertiary methods for recovering more oil from existing reservoirs. Gas injection, re-injection and miscible flooding of oil reservoirs is an economically viable technique. One of the most common problems in such recovery processes is the possibility of poor reservoir volumetric sweep efficiency because of channeling and viscous fingering. This may be caused by the large difference between the mobilities of the displacing and displaced fluids. Blending or introduction of a miscible fluid in petroleum, in general, will produce a number of alterations in its flow and phase behavior as well as the reservoir rock and conduit characteristics. One such alteration is the heavy organic precipitation,
which ultimately affects the productivity of a reservoir in the course of oil production or flow rate of the oil in a conduit (well or pipeline). In most such circumstances heavy organic precipitation may result in plugging or wettability reversal in the conduit and reservoir (Newberry and Barker, 1985; Leontaritis and Mansoori, 1988; Addison, 1989; Escobedo and Mansoori, 1992).

2. Mechanisms of deposition

Understanding the mechanism of the heavy organic deposition would result in more economical, environmentally sounder, and speedier oil production, transportation, and processing technologies. The kind and amount of depositions of heavy organics from petroleum fluids vary, depending on the hydrocarbons present in oil and the relative amounts of each family of heavy organics (Newberry and Barker, 1985; Addison, 1989; Garcia et al., 1989; Kawanaka et al., 1991; Escobedo and Mansoori, 1992). Four different effects (mechanisms) are recognized for such depositions. One or more of these mechanisms would describe the organic depositions that may occur during oil production, transportation or processing.

2.1. Polydispersity effect

The degree of dispersion of heavy organics in oil depends upon the chemical composition of petroleum (Kawanaka et al. (1991)). The ratio of polar/nonpolar and light/heavy molecules and particles in petroleum (Fig. 1) are the factors primarily responsible for maintaining the stability of the polydisperse oil mixture. Deposition of heavy organics can be explained by an upset in the polydisperse balance of oil composition.

Any change in temperature, pressure, and composition, such as addition of a miscible solvent to oil as demonstrated by Figs. 2 and 3, may destabilize the polydisperse oil.

For example, upon increase in the aromatic hydrocarbon content of a crude oil (a polar miscible solvent) asphaltene particles form micelle-type aggregates (Fig. 2) which do not grow in size with increasing concentration. This phenomenon is mainly due to packing constraints, resulting from the complicated molecular structure of asphaltene (Sheu et al., 1991). On the other hand, upon increase in the paraffinic hydrocarbon content of a crude oil, asphaltene particles may separate into a solid aggregate phase as demonstrated in Fig. 3.

Segments of the separated fractions which contain sulfur, nitrogen, oxygen and/or hydrogen bonds could start to flocculate and as a result produce the irreversible heavy organic deposits which may be insoluble in solvents.
2.2. Steric colloidal effects

It is demonstrated that some of the components of petroleum, especially asphaltene have a strong tendency for self-association. Upon further increase of the paraffinic hydrocarbon content of a crude oil some of the heavy organics (specially asphaltenes) will form colloids, will separate from the oil phase into an aggregate (large particles) and then will remain suspended in oil by some peptizing agents, like resins, which will be adsorbed on their surface and keeping them afloat as demonstrated by Fig. 4.

Stability of such steric colloids is considered to be a function of concentration of the peptizing agent in the solution, the fraction of heavy organic particles surface sites occupied by the peptizing agent, and the equilibrium conditions between the peptizing agent in solution and on surface of heavy organic particles. The amount of peptizing agent adsorbed is primarily a function of its concentration in the oil (Katz and Beu, 1945; Ray et al., 1957; Witherspoon and Winniford, 1967; Kim et al., 1994; Mansoori, 1994).

2.3. Aggregation effect

A concentration variation of a peptizing agent (such as resins) in oil will cause its adsorbed amount on surface of heavy organic particles to change. The peptizing agent concentration in oil may drop to a point at which its adsorbed amount would not be high enough to cover the entire surface of heavy organic particles as shown by Fig. 5.

This may then permit the heavy organic particles to come together (irreversible aggregation), grow in size (Fig. 6), and flocculate. The nature and shape of the resulting aggregates will determine their effect on the behavior of the petroleum fluids (Park and Mansoori, 1988a; Mukhametzyanov and Kuzeev, 1991; Kim et al., 1994).
For example, the irreversible aggregates of asphaltene are considered to follow an aggregation growth pattern shown by Fig. 7.

2.4. Electrokinetic effect

When the oil is flowing in a conduit (porous medium, well, pipeline, etc.) there is an additional effect (electrokinetic effect) to be considered in the deposition of its colloidal heavy organic constituents (Lichaa and Herrera, 1975; Mansoori, 1994). This is because of the development of an electrical potential difference along the length of the conduit generated by the motion of charged colloidal particles. This electrical potential difference could then cause a change in the charged and colloidal particles farther down the conduit, the ultimate result of which is their untimely deposition and plugging of the conduit as shown by Fig. 8. The factors influencing this effect are the electrical, thermal and wettability characteristics of the conduit, flow regime, temperature, pressure, flowing oil properties, characteristics of the polar heavy organics and colloidal particles, and blending of the oil.

Flowing oils containing, both, polar (like asphaltene) and non-polar (like paraffin) macromolecules could have plugging problems which would be a result of the combination of electrokinetic and dynamic pour point effects.

Depending on the operation and the kind of heavy organic present in oil one or more of the effects described above will cause heavy organic depositions (Escobedo and Mansoori, 1992; Mansoori, 1994). In what follows a number of mathematical models will be presented to deal with heavy organic deposition from petroleum fluids.

3. Modeling of heavy organic deposition from petroleum fluids

Solution of the heavy organic deposition problem calls for detailed analysis of heavy organic containing oils from the microscopic standpoint and development of molecular models which could describe the behavior of heavy organics in hydrocarbon mixtures. From the available laboratory and field data it is proven that the heavy organics which exist in oil generally consist of very many particles having molecular weights ranging from a few hundred to
several hundred thousand daltons (McKay et al., 1978; Long, 1981; Chorn and Mansoori, 1988; Leon­taritis and Mansoori, 1989). As a result, distribution-function curves are used to report their molecular weight distribution. Most of the heavy organics present in the oil deposit due to the first-order phase transitions from liquid to solid state. However, this is not generally the case for asphaltene particles. The high affinity of asphaltene particles to associate with one another, their absorbsivity to resins, and their extensively wide range of size distribution suggest that asphaltenes are partly dissolved and partly in colloidal state (in suspension) in oil peptized (or stabilized) primarily by resin molecules that are adsorbed on asphaltene surface (Mansoori, 1988; Escobedo and Mansoori, 1992). As a result, a realistic microscopic model for the interaction of asphaltene and oil should take into account both the solubility in oil of one segment and suspension characteristics (due to resins) of another segment of the molecular weight distribution curve of asphaltene. Four different stochastic models are presented here which are based on molecular-level interaction theories of particles (monomers, polymers, and colloids) dissolved or suspended in oil. A combination of these four models would be general enough to predict the heavy organic deposition from oil wherever it may occur during oil production, transportation, and processing.

3.1. Solubility model of interaction of heavy organics and oil

It is generally assumed that two factors are responsible for maintaining the mutual solubility of the compounds in a complex mixture such as the petroleum crude: They are the ratio of polar to non-polar and the ratio of the high- to low-molecular-weight molecules in oil (Kawanaka et al., 1991; Escobedo and Mansoori, 1992; Kim et al., 1994). Of course, polar and non-polar compounds are basically immiscible, and light and heavy molecules of the same kind are partially miscible depending on the differences between their molecular weights. However, in the complex mixture of petroleum crude or coal liquids and the like all these compounds are probably mutually soluble so long as a certain ratio of each kind of molecule is maintained in the mixture. By introduction of a solvent into the mixture this ratio is altered. Then the heavy and/or polar molecules separate from the mixture either in the form of another liquid phase or to a solid precipitate. In order to formulate the necessary model for prediction of the onset of migration and the equilibrium amount of deposition of heavy organics one can take advantage of the theories of polymer solutions. Because heavy organic particles have a wide range of size, or molecular weight, distributions one may consider them as heterogeneous polydisperse polymers and assume their fractional properties to be dependent on their molecular weights. According to the heterogeneous polymer solution theory the chemical potential, μ_{A_i}, of the ith fraction of a heavy organic in a solvent (crude oil) is (Mansoori and Jiang, 1985; Kawanaka et al., 1991):

$$
\frac{\mu_{A_i} - \mu_{A_i}^*}{RT} = \ln \phi_y + 1 - \left(m_y / \langle m_y \rangle \right) (1 - \phi_B) - m_y \phi_B + f_m \phi_B \tag{1}
$$

Subscripts A_i and B refer to the ith fraction of heavy organic and solvent, respectively; and superscript * stands for a standard state. To perform phase equilibrium calculations one needs to equate chemical potentials of every heavy organic fraction in the liquid phase, $\mu_{A_i}^L$, and the solid phase (Du and Mansoori, 1986a,b), $\mu_{A_i}^S$:

$$
\mu_{A_i}^S = \mu_{A_i}^L; \quad i = 1, 2, \ldots \tag{2}
$$

The molecular weight distribution function of heavy organics can be defined as:

$$
F(M_{A,i}) = \left(1/N_A\right) (dn_{A,i}/dM_{A,i}) \tag{3}
$$

where $M_{A,i}$ is the molecular weight of the ith fraction of heavy organic; $dn_{A,i}$ is the differential of the number of moles of the ith fraction of heavy organic whose molecular weight is in the range of $M_{A,i}$ to $M_{A,i} + dM_{A,i}$; and N_A is the total number of moles of heavy organic. Then the total volume fraction of heavy organic in the liquid phase, ϕ^L_A, in equilibrium with the solid phase can be derived in the following form:

$$
\phi^L_A = \int d\phi^L_{A,i} = \int_0^\infty \left(\langle M_{A,i} / \langle M_A \rangle \rangle V^C / V^L + V^S \times \exp(-m_{A,i} \theta) \right) F(M_{A,i}) dM_{A,i} \tag{4}
$$
V^C_A is the total volume of heavy organic in the crude oil ($V^C_A = V^C - \phi_b V^L$). Using this equation the onset of heavy organic migration from a petroleum crude and the amount of heavy organic remaining in a liquid mixture in equilibrium with a non-aggregated solid phase can be estimated.

3.2. Suspension model of interaction of asphaltene and oil

This model is based on the assumption that heavy organics in oil exist as particles suspended in oil. The causes of suspension vary with the kind of heavy organic particle (Leontaritis and Mansoori, 1988; Escobedo and Mansoori, 1992; Mansoori, 1994). For example, asphaltene suspension is assumed to be caused by resins which are adsorbed to the surface of asphaltenes and keeping them afloat because of the repulsive forces between resin molecules in the solution and the adsorbed resins on the asphaltene surface (see Fig. 4). Stability of such a suspension is considered to be a function of concentration of resins in the solution, the fraction of asphaltene surface sites occupied by resin molecules, and the equilibrium conditions between the resins in solution and on the asphaltene surface.

Utilization of this model requires the calculation of resin chemical potential and the resin adsorption on asphaltene particle surface and the related Langmuir constants. The resin content of an oil mixture at its critical point is given the name critical resin concentration, $(\phi_R)_{\text{crit}}$. When the temperature of the reservoir is too high to permit the determination of the critical resin concentration in the oil with a given solvent, the following expression is used to extrapolate $(\phi_R)_{\text{crit}}$ to the reservoir temperature:

$$\left\{ \left(\phi_R \right)_{\text{crit}} \right\}_{T_2} = \left\{ \left(\phi_R \right)_{\text{crit}} \right\}_{T_1} \alpha^{(T_2 - T_1)/T_2 T_1}$$

where α is a constant determined from the experimental data. The amount of resins adsorbed is primarily a function of their concentration in the liquid state (the oil). So, for a given system (i.e. fixing the type and amount of oil and asphaltenes) changing the concentration of resins in the oil will cause the amount of resins adsorbed on the surface to change accordingly. This means that one may drop the concentration of resins in the oil to a point at which the amount of resins adsorbed is not high enough to cover the entire surface of asphaltenes. This may then permit the asphaltene particles to come together (irreversible aggregation), grow in size, and flocculate.

3.3. Kinetics of aggregation of heavy organics

A fractal aggregation model is developed, which is capable of predicting the onset and amount of asphaltene deposition from petroleum crudes under the influence of miscible solvents (Park and Mansoori, 1988b). This model is based on the fact that resins play a key role in the solubilization of asphaltenes because they reduce the amount of asphaltene aggregation. In other words, the degree of solubility of asphaltenes in the oil depends on the peptizing role of resins with respect to asphaltenes (i.e. the change of resin concentration in the oil due to the addition of a miscible solvent). By utilizing the kinetic theory of fractal aggregation into the theory of heterogeneous polymer solutions, it is possible to describe properly the growing mechanism of asphaltene aggregates, the growing size distributions of asphaltene, and the geometrical aspect of asphaltene aggregation in oil due to several factors. One may consider a system consisting of N_c clusters of N_0 asphaltene particles (identical particles of radius R_0 and unit mass m) which are suspended randomly in an oil and are stabilized by resin molecules adsorbed on the surfaces of asphaltene particles. The clusters of asphaltene particles act as Brownian particles which are suspended due to thermal motions of molecules of the dispersion medium. Introduction of a miscible solvent into this system may result in a new condition in which the asphaltene clusters would stick rigidly to each other. That is, a cluster A_i of mass m_i colliding with a cluster A_j of mass m_j would form a single new cluster of a mass m_{i+j}. This process is then repeated. The kinetics of such an aggregation is assumed to obey the following mechanism:

$$A_i + A_j \rightarrow A_{i+j}$$

where K_{ij} is a concentration-independent kinetic (or collision) kernel which describes the aggregation mechanism. The rate of aggregation, R_{ij}, at which an i-cluster of a given mass m_i and a j-cluster of a
given mass m_j may come into contact with each other and form an $(i+j)$ cluster is given by:

$$ R_{ij} = K_{ij} C_i C_j; \quad C_i = n_i / N_0 $$

(7)

where n_i is the number of clusters of mass m_i (containing i asphaltene particles of unit mass m). Since the population of the resulting cluster k ($k = i + j$) increases by all collisions between i- and j-clusters and decreases when a k-cluster combines with another cluster, then $C_k(t)$ will satisfy:

$$ \frac{\partial C_k(t)}{\partial t} = \frac{1}{2} \int_0^k K(k-x, x) C(x, t) C(k-x, t) dx
- C_k(t) \int_0^\infty k(k, x) C(x, t) dx $$

(8)

A major advantage of this coagulation equation is that many analytic results can be obtained from it. The kinetic theory of fractal aggregation process can be utilized in order to describe properly the growing size distribution of clusters of asphaltene particles due to the influence of miscible solvents. The analytic equation for the “reduced” size distribution of clusters of asphaltene molecules can be shown as:

$$ F(y; C_R) = \left(1 - 2w\right)^{1-2w} y^{-2w} \exp\left[-(1-2w)y\right] / \Gamma(1-2w) $$

(9)

where $y = m / \langle m \rangle$ and $w = w(C_R)$. Utilization of the kinetic aggregation of diffusive clusters has enabled us to relate the concentration of resin in a mixture of oil and a miscible solvent with the growing size distribution of clusters of asphaltene particles.

3.4. Electrokinetic deposition of particles in wells and pipelines

This model deals with heavy organic flocculation caused by the streaming potential generated by the flow of oil containing charged solid particles. It has been proven experimentally that charged suspended particles, such as asphaltene colloids, present in solutions will flocculate out when placed under the influence of an electrical field. Furthermore, in general, if the streaming potential generated during flow of oil through reservoir pores or well tubings and pipes is large enough, it could assist in flocculating asphaltenes and other charged particles due to electrodeposition (Mansoori, 1994).

As the oil enters the flow conduit (well or pipeline) asphaltene particles begin to get attached to the wall where a phase separation occurs leaving the two phases oppositely charged (e.g., the asphaltene phase positively and the oil phase negatively charged, for the case of Fig. 9). As the oil continues to flow downstream more phase separation occurs and the charge difference between the two phases grows. Hence, a potential field is set up between the wall and the bulk phase and also between the inlet and exit of the conduit. The transfer of charged asphaltene particles with the flow of oil causes a net current or a “streaming current” and therefore a potential difference. This potential difference opposes the mechanical transfer of charge. For the system shown in Fig. 8, where the particles are positively charged, the potential is set up as negative

Fig. 9. Schematic representation of the streaming potential generated by the flow of oil containing charged particles.
upstream and positive downstream, if it is to oppose the flow of the charged asphaltene particles. This potential difference causes the particles to flow backwards, or one may say it causes asphaltene particle upflow diffusion or back-conduction. The charge transfer due to back-conduction is called "leak current".

At equilibrium, when the asphaltene particles tend to remain stationary because of the two opposing forces, the potential difference is called streaming potential. For example, the streaming potential corresponding to the turbulent flow in a pipe is (Mansoori, 1994):

\[E = 4.95 \times 10^{-3} \left[\frac{16}{3} \varepsilon \varepsilon_0 \rho \right] \left[\frac{d^{0.75} L \rho^{0.75}}{\mu^{0.75} k} \right] u_{avg}^{0.75} \]

where \(\mu \) is viscosity of the medium; \(\varepsilon \) is the zeta potential of asphaltene particles; \(L \) is length of the pipe; \(\varepsilon \) is permittivity of oil; \(r_p \) is radius of the particle; and \(u \) is the electrophoretic velocity of the particle. By application of the streaming potential equation it is possible to determine the flow conditions under which charged heavy organic deposition and plugging of pipes and wells would occur.

4. Results and discussion

Depending on the kinds of heavy organics present in a crude oil and the operations which a crude oil goes through in oil production, transportation, and processing one or more of the models presented in this report could be used for heavy organic deposition prediction from petroleum crudes. While the paraffin deposition is mostly due to lowering the temperature of the crude, asphaltene and resin depositions are due to variety of causes as mentioned above. However, since a crude oil could contain all varieties of heavy organics and since all the heavy organics and hydrocarbon families of the crude are polydisperse compounds the phenomenon of heavy organic precipitation is more complex than, for example, the precipitation of a single monodisperse heavy organic compound.

By utilizing the above-mentioned mechanisms and models a comprehensive package of computer programs and database, named ASPHRAC, has been developed by the author which calculates various properties of petroleum fluids containing heavy organics. This package is based on the following principles: statistical mechanical mixing rules and conformal solution equations of state, polydisperse polymer solution theories, polydisperse thermodynamics and various continuous mixture phase equilibrium algorithms, electrokinetic phenomena, transport phenomena, colloidal solution theory, and fractal kinetics of aggregation theories. This package is general enough to predict the heavy organic–oil–wall interaction problems wherever they may occur during oil production, transportation or processing. The emphasis of the package is on the prediction of the behavior of asphaltenes, resins, and paraffin/waxes and their role in the production, transportation, and processing of natural and synthetic hydrocarbons. The kind of input data which may be used in the package are: bottom-hole (and/or stock-tank oil) sample(s) composition data, oil aromaticity, oil paraffin, resin, asphaltene and diamondoid content, characterization data for the C\(_7^+\) fraction of oil, onset of deposition and amount of heavy organic titration data, chromatography (GC, HPLC and GPC) data of oil fractions. In what follows some examples of the utility of this package is presented for a few organic deposition studies.

One of the necessary information for miscible gas injection of an oil reservoir is the knowledge about the pressure–composition (\(P-X \)) phase diagram of the crude plus miscible injectant at the temperature of the reservoir. Experimental measurement of such data in the absence of any solids deposition is rather routine, even though expensive. However, high-pressure simultaneous measurement of the vapor–liquid phase diagram and the onset boundary of heavy organic deposition (solid–liquid and solid–vapor) when asphaltene and other heavy organics present would be a costly undertaking. With the application of a comprehensive deposition computational package which incorporates all the effects discussed above it is possible to produce such a gas–liquid–solid phase diagram. As an example the predicted phase diagram of an asphaltene crude oil plus carbon dioxide along with the experimental phase boundary data are reported in Fig. 10.

Asphaltene deposition from petroleum fluids is partly due to solubility effect and partly due to
colloidal phenomena. Asphaltene particles have the tendency to aggregate together in an irreversible fashion, grow in size, and form new and larger particles. They have the affinity to adsorb resins and other charged species present in the oil. They also are electrokinetically active by causing electrostatic charge generation and also becoming affected by stronger electrostatic charges.

In order to demonstrate the effect of electrokinetics on asphaltene deposition we have produced Figs. 11–13 for a particular asphaltic crude mixed with a miscible injectant (MI) at various proportions, temperatures, and pressures. Each set of these figures consist of two parts.

Part (a) of each figure is the vapor–liquid–solid (asphaltene) phase diagram showing the boundaries of each phase on a P–X diagram and indicating the onset of deposition of asphaltene in a stationary state.

Part (b) of each figure consists of the dynamic Q–P phase diagram for various MI/crude proportions at a certain length of the conduit (well or pipeline). The function (Q) is defined as:

$$Q = U_{avg}^{1.75}d^{0.75}/k$$

where the variation vs. pressure demonstrates the dynamic effect of average crude velocity (U_{avg}) flowing in the well (or pipe), the effect of well (or pipe) diameter (d) and the effect of crude conductivity (k) on the onset of deposition of asphaltene. In these figures the region above each curve of constant MI/crude proportion is the asphaltene deposition.
region, while the region under each figure is representative of the flow without asphaltene deposition. To avoid asphaltene deposition the flow condition must remain under the appropriate curves. In constructing these diagrams it has been necessary to take advantage of the various models of heavy organic deposition presented in this report. Similar calculations can be performed on any crude prone to heavy organic deposition. According to these figures with proper planning in the production scheme, consideration of the characteristics of the producing petroleum, injection fluid, well casing, and the reservoir it is possible to choose a formation-damage-free production scheme.

Among the heavy organic depositions, asphaltene precipitation is an irreversible process. As a result, when a mixture of heavy organics containing asphaltene is precipitated out of a petroleum fluid it will not be completely redissolved by reversing its conditions. This has been a major reason why equilibrium thermodynamic models have failed to predict crude oil deposition envelops accurately.

Heavy organics, specially asphaltene and resin, present in crude oils have generally complex molecular structures. There have been numerous efforts under way to characterize the molecular structure of these compounds with various degrees of success. While such information helps to appreciate their complexity and their structural differences, it is of little use to model their deposition during petroleum production and transportation operations. It is like to expect from a physician to predict the conditions of stroke in a patient by the knowledge from the molecular structures of various cholesterol present in the patient’s blood.

Acknowledgements

The author would like to thank Mr. Joel Escobedo, Mr. Anand Janardhan, Dr. Sang J. Park, Dr. Kosta Leontaritis, Mr. Saido Kawanaka, Dr. Tsang S. Jiang, Dr. Pin-Chan Du and many other colleagues and students for their helpful discussions and comments. This research is supported in part by UNDP, Chevron Oil Company, MUCIA, ARCO Oil and Gas Company, Petrobras, Nova Huski Research Corp., Exxon Education Foundation, IMP, Shell Oil Company, and various research grants from the U.S. National Science Foundation and the U.S. Department of Energy.

References

G.A. Mansoori
Modeling of Asphaltene and other Heavy Organic Depositions

