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ABSTRACT 

Two continuous mixture phase equilibrium algorithms which can 
be used for vapor-liquid equilibrium calculation involving very- 
many-component fluid mixtures are proposed. The algorithms are 
applied to the case of simulated gas-condensate systems with 
analytical results. The proposed continuous mixture techniques 
reduce the required computer time significantly While they retain 
accuracy of the predictions. In addition, the proposed 
continuous mixture algorithms are applicable to varieties of 
multicomponent mixtures, equations of state, and mixing rules. 

INTRODUCTION 

There have been a number of new development in the theory of 
continuous mixtures: Blum and Stell (1979) have introduced a 
diameter distribution to characterize a hard-sphere continuous 
mixture, they also have extended the Percus-Yevick approximation 
for hard-sphere mixture to the continuous fluids of hard-spheres. 
Aris and Gavalas (1966) have introduced functional analysis into 
the thermodynamic description of polydisperse system and into the 
kinetics of continuous reactions such as polymerization or 
cracking. Concerning petroleum distillation, Hoffman (1968) have 
presented a numerical integration method in which he adopts an 
integrated form of the Clausius-Clapeyron equation and Raoult's 
law to compute vapor pressures of petroleum fluids. He uses a 
Gaussian distribution, with the normal boiling temperature as the 
independent variable, to describe the vapor and liquid phases. 
Similar procedures as Hoffman's have been presented by Kehlen et 
al. (1985) whose treatment is based on Raoult's law and 
compositions described by normal density function to derive 
thermodynamic properties of continuous mixtures- 

An approach using an equation of state for solving phase 
equilibrium problems in continuous mixtures, has been developed 
by Gualtieri et al. (1982). They use the van der Waals equation 
of state to solve the fractionation of a polydisperse impurity 
dissolved in a solvent and the shift of the critical point due t0 
the presence of a polydisperse impurity. Similar results for 
flash calculation of continuous mixtures which are based on the 
Redlich-Kwong equation of state have been reported by Brian0 
(1983). Cotterman and Prausnitz (1985) have introduced tvo 
techniques for phase equilibrium calculation of reservoir fluids, 
one of which is a continuous model and the other is a semi- 
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continuous model. In both of their techniques they use the Soave 
equation Of state to perform phase equilibria calculation. 

Due to the lack of a general algorithm for continuous mixture 
phase equilibrium calculation, a number of simplifying 
assumptions have been made in the past. Such assumptions have 
hampered the effective use of continuous mixture theory in 
practical phase equilibrium calculations and development of 
accurate prediction techniques. In order to perform phase 
equilibrium calculations when the species of a continuous mixture 
have a wide range of molecular weight distribution. we have 
developed three computational algorithms. (one of these 
techniques was discussed in a paper which was presented in the 
1986 SPE California Regional Meeting, U.S.A.) Due to space 
limitation, in the present report we introduce only the other two 
computational algorithms by which we can also predict phase 
behavior of continuous mixtures such as petroleum reservoir 
fluids, polymer solutions, or vegetable oils. In part II we 
introduce the basic theories behind these two new algorithms. In 
part III we illustrate VLE flash calculations using the proposed 
techniques which includes the continuous Peng-Robinson equation 
of state and the computational results as compared with simulated 
gas-condensate VLE flash data. 

THEORY OF PHASE EQUILIBRIUM OF CONTINUOUS MIXTURES 

For a mixture with a large number of components, composition 
may be replaced with a composition distribution function 
F(I,IO,~) whose independent variable I is some measureable 
property such as molecular weight, boiling point, or the likes, 
with mean value of I and variance of 8. 
distribution function g(I,IO,q) 

The composition 
is normalized such that 

_I-IF(I)dI = 1 

over the entire range of I. Since distribution functions are not 
additive, Ff(I), FL(I), and FV(I) can not possess the same 
functional forms in a specific flash calculation scheme. 

In the case of continuous mixtures, an expression for the 
chemical potential of a fraction in a continuous mixture is 
generally needed for the phase equilibrium calculation (e.g., 
Gualtieri et al., 1982; Briano. 1983; Cotterman and Prausnitz, 
1985). It can be derived as the following form. 

- aP 
&(I)=r+"(I)+II - z)dv-RTln 

V 
+RT 

v aF(1) V RTF(1) 
(1) 

or 

~(r)=ro(r)+btv,Trfo,~: fI))-RTln F(IvI 
) 

(21 
i) O*? 

where PO(I) iS the chemical potential of the continuous 
reference state at temperature T. With regard to the above 
equation we have assumed that there is only one family of 
continuous mixtures in the system. Extension of the above 
formulas to the case of a multi-family continuous mixture is 
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straightforward. 

According to classical thermodynamics for multi-phase 
equilibrium calculations, it is necessary to equate temperatures, 
pressures, and chemical potentials of components in every phase. 
For vapor-liquid equilibrium of a continuous mixture, this means 
the following conditions must be satisfied: 

T= TL= TV (3) 

P = PL(T,vL,f oL,?L)= PV(T#v"JoVI?") (4) 

8L(T,vL,IoL,?L: {II) - RTln vL 
F(I aL,SL:fI1) 

= ~V(T,vv,I.v,,v:~I~)- RTln (51 

Considering the fact that distribution function varialbe I 
changes from some initial value of 11 to very large values, 
eqn.(5) is representative of a multitude of equations. 
Generally, it is impossible to solve these equations 
simultaneously for the liquid and vapor equilibrium calculations 
of continuous mixture?. 

In order to extend the application of continuous 
thermodynamics to practical cases such as reservoir fluids, 
polymer solutions, or vegetable oils, we have presented one 
computational algorithm (1986) for phase behavior predictions Of 
continuous mixtures .with wide ranges of molecular weight 
distribution. NOW, two other computational algorithms, based on 
the following theories, are developed for continuous mixtures. 

Direct Minimization of the Gibbs Free Energy Algorithm 

Based on the classical thermodynamics for a system in 
equilibrium (constant T & P). the total Gibbs free energy of the 
system is minimal with respect to all possible changes. In other 
words, at the equilibrium state, differential variations can 
occur in the system at constant T and P without producing any 
change in the total Gibbs free energy. Thus, a general criterion 
for a system to be at equilibrium is, 

(dG) Tp=O (6) 

To apply this criterion to continuous mixture phase 
equilibrium calculations, we restrict consideration only to a one 
continuous mixture family of compounds in vapor-liquid 
equilibrium, In such cases, the total Gibbs free energy of the 
system is 

G = GL+GV (7) 

Generally, the Gibbs free energy of a one-family continuous 
mixture can be presented as the following expression. 

NRT V 
G=_fy[P- ----_3dV-NRT~IF(I)ln[ ]dI+PV+GO 

V NF(I)RT 
(8) 



Where N is the number of moles and Go is the Gibbs free energy 
of the continuous reference state at temperature T. Thus the 
total Gibbs free energy of eqn.(7) is a function of temperature, 
volume, mean values, and variances. Since the system is in phase 
equilibrium, the equilibrium criterion, eqn. (6), is imposed on 
the system. Then, all of the first derivatives of the total 
Gibbs free energy G with respect to each variable, such as 
variance or mean value, will equal zero, thus, G is minimized at 
constant T and P. 

(aG/a~L)T,P,,V,IoL,I~V =O 

(aG'+)T,P,uL'IoL,IcV =G 

(aci/aI oL)T,P,?L,?V,I~V =' 

(aG/aIoV)T,P,?L,"V,IoL =' 

(9) 

(10) 

(11) 

(12) 

To perform flash calculations for a one-family continuous 
mixture, eqn's.(9)-(12) and eqn.(4) will form a set of 5 
nonlinear equations which must be solved simultaneously. 

Equilibrium Ratio Algorithm 

Another criterion for a two-phase system to be in equilibrium 
is that the following condition must be satisfied for the system 
at a given temperature and pressure. 

(13) 

GiL and $iv are fugacity coefficients of component i in 
liquid and vapor phases, respectively. By analogous arguments, 
as in the discrete mixtures, the following equation results for 
phase equilibrium calculations of a one-family continuous 

mixture. 

tiL(LIoL.aL) .FL(I.IoL,vL) = ~v(I,I~v.~v).Fv(~~Iov,?v) (14) 

Generally, the fugacity coefficient Of component I is 

expressed in the following form: 

ap 
RTln~(I)=~~[- 

RT 

aF (I) 
--ldv-RTlnZ (15) 

V 

At this stage, we may define an equilibrium ratio K(1) which is 

the ratio of two fugacity cofficients of component I such that 

K(I) =$L(I,I V OL'?L)/$ (I,I.V#?V) (16) 

RY using the concept of material balance for continuous 

mixture, the following expressions for describing the composition 
of component I result 

F(I,IoL,vL) = 
F(I,Iof,qf) 

l+&VCK(I) -11 
(17) 
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and 

F(I,1ov,~v) = 
F(I.Iofr~f) .K(I) 

l+bv [K(I) -11 
(18) 

By integrating eqn's.(lll) and (18) over the entire range of I, 

I 

the following expressions are derived 

II 
Ff(I,Iofrnf) dI 

=l (19 
l+&v[K(I) -11 

JI 
Ff(I,Iof,qf)K(I) 

d1 = 1 (20 
l+dVIK(I)-11 

1 

The other two equations are derived for flash calculations of 
a one-family continuous mixture by multiplying each term of 

eqn-(17) and (18) by [l+&v[K(I)-111.1, and integrating over the 
entire range of I. 

IIFI,(I.IoL,?L) ~l+~V~K(I)-ll)IdI= J-IFf(I,Icf,~f)IdI (21) 

JI 
Fv(IrIovrav)~l+~v[K(I)-1111 

dI= ~IFf(I,Iof.~f)IdI (22) 
K(I) 

The equality of pressures, eqn.(4). together with 
eqn's.(19)-(22) will constitute a system of 5 equations. This 
system of equations must be solved simultaneously for phase 
behavior prediction of a one-family continuous mixture. In what 
follows we introduce the proposed algorithms for the Peng- 
Robinson equation of state which is extensively used 
reservoir fluid phase behavior calculation. 

CONTINUOUS PENG-ROBINSON EQUATION OF STATE 

To illustrate the utility of the proposed algorithms, 
Peng-Robinson equation of state of mixtures, 

RT a(T) 
P= 

v-b v(v+b)+b(v-b) 

a(T)=: T xiXj(aiiajj)% =CF Xiaii'12 
1 

b=E xibi 
i 

ki=0.37464+1.54226w-0.26992W2 

for 

the 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

joined with the exponential-decay distribution function, which is 
suitable for gas-condensate reservoir fluids, 

F(I)=(l/~)exp[-(I-Io~/~l (30) 

is used to perform the flash calculations of continuous gas- 
condensate mixtures. In order to extend this equation of state 
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to continuous mixtures, we modify eqn.(24) to the following form: 

[a(T)]% =al-a2Th (31) 

where 
al=2 xiail , 

i 
al=_fIF(I)al (IJar (32) 

a2=Z xiai2 , a2=/IF(I)a2(I)dI (33) 
i 

and 

ail'[a(Tic)I'(l+ki) (341 

ai2'la(Tci)/Tc-I' ki (35) 

Graphical representation of ail, ai2, and bi for paraffinic 
hydrocarbons versus molecular weight have been reported by Du and 
Mansoori (1986). Thus,al(I), a,(I), and b(X) of paraffins 
are represented by the following third order polynomials with 
repect to molecular weight I: 

al(I)=alo+allI+a121*+a131* (36) 

a2(I)=a20+a211+a221z+a2311 (37) 

b(I)=bo+blI+b212+b31' (38) 

To introduce the exponential-decay distribution function, 
egn. (301, into eqn*s.(32) and (33), we can derive continuous 
mixture expressions for parameters al, a2, and b of the Peng- 
Robinson equation of state. 

Using the continuous mixture Peng-Robinson equation of state, 
the required equations, based on the proposed algorithms for a 
one-family continuous mixture, have been derived. The derivation 
follow5. 
(i) In order to utilize the direct minimization of the Gibbs free 
energy algorithm for VLE calculations of continuOU5 mixtures, we 
need to derive an expression of the Gibbs free energy. TO 
introduce eqn.(23) into eqn. (81, the Gibbs free energy of the 
system can be derived in the following form: 

'f-vv G=-gL+ 
'lL_?f 

gv (39) 
VL_')V TL-TV 

where 

gL=-RTln(vL-bL)+ aL In 
vL-0.414b 

2.82BbL vL+2.414bL 

av 
-RTlnqL+ 

vLRT 

vL-bL vL(vL+bL)+bL(vL-bL) 
(40) 

and gv will have a similiar expression. 

To perform VLE flash calculations, we need to substitute 
eqn. (39) into eqnls.(9)-(12). But, since Iof =IoL = 1,V 
=the molecular weight of methane, we will only need to solve 
eqn's.(9) and (10). Using eqn's.(4), (91, and (lo), the P-T 
diagram, the equilibrium ratios, Ri, and the vapor-liquid 
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ratios of a hypothetical gas-condensate reservoir fluid with nf 
= 25.0 are calculate& and are reported in Fig.(l), (2), and (J), 
respectively. Also reported in these figures are the P-T 
diagram, equilibrium ratios, and vapor-liquid ratios of the same 
fluid assumed to contain very-mary pseudocomponents. This figure 
shows that the proposed algorithm can accurately predict the 
Phase behavior of a many-component mixture. 

00 80 180 100 800 NO 880 

TEMPERATURE F 

PRESSURE PSIA 

Fig. (2) 

DO 

’ 
at 220°F 
pig.(g) 

Figure (l)-(3): Phase diagrams 
of a continuous mixture with 
vf=25.0 as compare with the 
results by using a 
pseudocomponent method (dots). 

(ii) In order to utilize the equilibrium ratio algorithm for VLE 
calculations of continuous mixtures, we need to introduced 
eqn. (23) into (15). As a result, fugacity coefficient of 
component I can be derived in the following form: 

+(I)=exp(Do+D11+D212+ D313) (42) 

where 

RT 
D,=ln-+boQl+(alo-a20 

P (v-b) 
T4) Q2 

Dl=blQ1+ (all-a21T% Q2 

D2=b2Ql+(a12-a22 T%Q2 

D3=b3Q1+ (a13-a23 +I Q2 

,,L--” [ 
” 1 v-0.414b 

b(v'+2bv-b')+2.R28b'ln 
1 

v-b RT v+2.414b 

(43) 

(44) 

(45) 

(46) 

(47) 

Q2= ” In :;E'ztf", (48) 
1.414bRT . 
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Q3=(alo-a2o T%)+(all-a21 Tkl (Io+~)+(al2-a22+) 
(Io'+210~+2~')+(a13-a23T~) (Io3+310zn+610q'+6~3) 

(49) 

By substituting eqn.(42) into eqn.(l6), the following equation 
for K(1) will result. 

K(I)=expf (D,L-Dov)+(DIL-D,,)I+(D2L-D2v)12+(D3L-D&I31 (74) 

Based on the above expression for K(I). the P-T diagram of a 
hypothetical gas-condensate reservoir fluid with ~~'25.0 is 
calculated by using eqn's.(19)-(22). The computational results 
are identical with the results of the previous algorithm as it 
was reported in Fig.(l). 

CONCLUSIONS 

Accurate prediction of very-many-component mixture phase 
behavior by using the conventional methods requires the 
assumption of a large number of pseudocomponents, as a result, 
excessive amount of computer time. The proposed algorithms have 
been successful in reducing the computer time significantly while 
retaining the basic characteristic of the mixtures under 
consideration. Practical application of the proposed schemes for 
realistic very-many-component mixtures requires the use of unlike 
interaction parameters in the equation of state. The authors 
(Mansoori and Du, 1986) have solved this problem for realistic 
gas-condensate mixtures which will be reported in a forthcoming 
publication. 
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