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Note on the Perturbation Equation of State of Barker and Henderson* 

G.Ali MANSOORI, (1)
 Joe A. PROVINE,(2) AND Frank B. CANFIELD (3)

School of Chemical Engineering and Materials Science, Unii•ersity of Oklahoma, Norman, Oklahoma 73069 

Perturbation theory of equation of state due to Barker and Henderson is reformulated. This new 
formula­tion makes it possible to calculate the Helmholtz free energy of a fluid system analytically by 
perturbation relations of Barker and Henderson, without use of any approximation or need of any 
numerical table for the hard-sphere reference system other than the original Percus-Yevick 
approximations. The results are compared with the calculation of Barker and Henderson, and it is 
shown that the two agree with each other at all the temperatures which are compared, while the 
present method produces compressibilities slightly closer to the experimental and machine-calculated 
data. The results of the present method, based on average Percus-Yevick hard-sphere compressibilities, 
are also compared with the result of other theories of equation of state of simple fluids, molecular 
dynamics, and Monte Carlo calculations. 

I. INTRODUCTION

Perturbation equation of state of simple fluids due to 
Barker, Henderson, and co-workers has been probably 
a more successful approach to the prediction of equili­
brium thermodynamic properties of simple real fluids,1 
classical and quantum, than other approaches so far 
published. The main objective of this perturbation 
approach is to calculate the properties of simple real 
fluids by perturbation around a reference hard-sphere 
fluid. For this purpose the macroscopic properties of 
the reference hard-sphere fluid should be as analytic as 
possible with respect to the molecular properties of hard 
spheres. While some satisfactory analytic relations are 
available for the hard-sphere equation of state, no satis­
factory analytic form for the radial distribution func­
tion of the hard spheres, which is also needed in the 
perturbation equation of state of Barker and Hender­
son, is available. In the present paper a method is in­
troduced by which this difficulty is eliminated. 

II. REFORMULATIONS

Barker and Henderson1 have shown that a perturba­
tion approximation of the partition function of a system 
of simple spherical molecules with pairwise additive 
potential energy gives the following relation for Helm­
holtz free energy: 

t:..F/NkT= (F-Fo)/NkT 
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1 J. A. Barker, D. Henderson, and W.R. Smith, J. Phys. Soc. 
Japan Suppl. 26,284 (1969). Look for the other references in 
this paper. 

In Eq. (1), g0 (d, R) is the radial distribution function
of a reference system of hard spheres with diameter d 
such that 

d= [ {l- exp[ -(3u(R)]jdR. (2) 

For g0( d, V), Barker and Henderson, in their earliest
works,2 used the tabulated numerical calculation of the 
Percus-Yevick equation3 for hard spheres for 2d<R� 
3.9Sd. For d � R� 2d, they used the related analytic
expressions of Wertheim4 ; while for R>3.9Sd, they
approximated g0 (d, R) to unity. Later Barker and
Henderson calculated g0 (R) for d<R<Sd from G(s), 
which is the Laplace transform of Rg0 (d, R) and is
derived by Wertheim,4 by numerical inversion,° and 
again they approximated g0(d, R) to unity for R'?Sd. 
Because of the difficulties for using tabulated values for 
g0(d, R) in integrals appearing in Eq. (1), and also be­
cause of the slow convergence of g0 (d, R) toward unity,
especially at high densities, use of the tabular values 
and numerical inversion of Laplace transform of 
Rg0(d, R) at best is cumbersome3 and at worst is un­
reliable.6 The following formulation makes it possible 
to use directly the analytic relations of g0

C1 l ( d, R) for
d�R�u and G(d, s) for u<R< oo. 

Barker and Henderson,2 Eq. (1), used the local com­
pressibility approximation for the second-order pertur­
bation term. In the present formulation we use the 
macroscopic compressibility approximation. As stated 
by Barker and Henderson, the use of either approxima­
tion does not change the over-all picture appreciably. 
The macroscopic approximation gives better agreement 
with machine-calculated data at low temperature, 
whereas the local approximation is slightly better at 

2 J. A. Barker and D. Henderson, J. Chem. Phys. 14'7, 4714 
(1967). See also: J. A. Barker and D. Henderson, J. Chem. 
Educ. 45, 2 (1968); J. Chem. Phys. 46, 2856 (1967). 

3 G. J. Throop and R. J. Bearman, J. Chem. Phys. 42, 2408 
(1964). 

4 M. S. Wertheim, Phys. Rev. Letters 10, 8,321 (1963).
• S. Kim, D. Henderson, and J. A. Barker, Can. J. Phys. 47,

99 (1969). 
6 R. Bellman, Numerical Inversion of the Laplace Transform 

(American Elsevier Pub!. Co., Inc., New York, 1966). 
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FIG. 1. Compressibility of hard spheres vs VIVo, (Vo= 
N u3 /V2), as calculated from the average Percus-Yevick equation; ° are the molecular dynamic points for hard spheres. 

high temperatures. In the present formulation, the 
macroscopic approximation is used to avoid double 
numerical differentiation of the second term with re­
spect to density in deriving compressibility. The cor­
responding expression for the macroscopic approxima­
tion is given by 

F-Fo l'" -- = 27rp{3 go(d, R)u(R)R2dR 
NkT (f 

-7rp{3 (ap
) l'" go(d, R)u2(R)R2dR. (3) 

ap 0 a 

The integral in the first term, in the right-hand side 
of Eq. (3) can be written as 

['" go(d, R)u(R)R2dR 

= 1'" go(d, R)u(R)R2dR 

-la 

go(d, R)u(R)R2dR. (4) 

According to Frisch et al,7 by defining C (d, s) and 

7 H. L. Frisch, J. L. Katz, E. Praestgaard, and J. L. Lebowitz, 
J. Phys. Chern. 70,2016 (1966). 

U1(c, s) such that 

C(d, s) = i'" e-B:1; go(d, x)xdx (5) 

and 

xu(c, x) = 1'" e-8
% U1(c, s)ds, (6) 

where x=R/d and c=d/u, the first term in the right­
hand side of Eq. (4) can be written as 

1'" go(d, R)u(R)R2dR=d3 1'" C(d, s) U1(c, s)ds. (7) 

The Laplace transform form of Rgo( d, R), that is, 
C(d, s), as defined by Relation (5) has been derived 
analytically by Wertheim4 from Percus-Yevick integral 
equation for hard spheres and is given in the Appendix 
of the present paper. The inverse Laplace transform of 
x u(c, x), that is U1(c, s), is defined by Eq. (6). 
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FIG. 2. Equation of state for 6,12 potential at T* = 1.35. The 
curves are isotherms calculated by different theories: HNCV, 
Hypernetted chain and virial theorem; PYV, Percus-Yevick 
and virial theorem; BH, Barker and Hendersons' perturbation 
method; PYOZ, Percus-Yevick and Ornstein-Zernike; BGV, 
Born-Green and virial theorem. The points given by 0, and. 
are machine-calculated values. The pomts given by X are experi­
mental values. See Ref. 2. 
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FIG. 3. Equation of State for the 6,12 potential at T*=2.74. 
The curves are isotherms calculated by different theories as 
labeled. The points given by 0,50, and. are machine-calculated 
values. The points given by X are experimental values. See Ref. 2. 

Considering Lennard-Jones (12,6) potential func­
tion 

u(R) = 4E[(o/R) 12_ (u/R)6J, 

it is clear that the hard-sphere diameter d as defined by 
Eq. (2) is always less than or equal to u. Also, it can 
be shown, for T*=kT/E~O(lO'), that 

d?'u/2 
or 

d~u~2d. 

With this constraint the upper limit of the second inte­
gral in the right-hand side of Eq. (4) will not exceed 
2d. For d~R~2d, go(J.}(d, R) also is calculated analy­
tically by Wertheim. A form of go(I}(d, R) which con­
tains only real variables is given in the Appendix of the 
present paper. 

Similarly, the integral in the second term of Eq. (3) 
can be divided into two integrals as the first term. By 
defining Uz(d, s) as the inverse Laplace transform of 
x u2(c, x) one finally gets 

AF 6TJ 1 (iJP ) 1 - = -[2(11-12)- - - - (Is-I4)J (8) 
NkT T* fJ iJP 0 T* ' 

where 

f
l /O 

Iz(d,c) = 1 go(J.} (d,x) u(c,x) x2dx, 

I3(d,c) = fa G(d,s) Uz(c,s)ds, 

and 

f
llO 

I4(d,c) = 1 go(l} (d,x) u2(c,x) x2dx, (9) 

and where 

4 [1 (S)6 1] U1(c,s)= -s4 - - --
c6 10! C 4! 

and 

U2(c,s) = 16 S10 [~(~)12 _2-(~)6 +~]. 
C12 22! C 16! C 10! 

(10) 

From thermodynamic relations for pure systems, the 
compressibility can be derived from the Helmholtz free 
energy by 

Z=PV/NkT=p(iJ/iJp)(F/NkTh (11) 

By inserting Eq. (8) in Eq. (11) we get 

PV (PV) 
NkT= NkT 0 

+ 6TJ {2(II- I2)- ~r!(iJP) + ~(iJ2p)] (Is-I4)} 
T* T*L.B fJP 0 (3 iJF2 0 

+ i*[2(It'-U)- ~(:~)o ;* (Ia'-U)] , (12) 

where (PV /NkT)o is the hard-sphere compressibility 
and 

, f1/' iJgO(l} (d,x) 
12 (d,c) = u(c,x)x2dx, 

1 fJp 

U(d,c) = [10 f(s,TJ) U2(c,x)ds, 
o 

f 1/ ' iJgo(I}(d x) 
U(d,c) = ' u2(c,x)x2dx, 

1 fJp 

andf(s,TJ) is given in the Appendix. 

(13) 

Equation (12) has an advantage over the Barker 
and Henderson approach in that it is completely 
analytic, i.e., no tabular values or approximations are 
needed for go(d,x) except the Percus-Yevick original 
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TABLE I. Compressibilities of Lennard-Jones 12,6 fluid for different isotherms. 

T*=2.74 T*=1.35 

p* a b a b 

0.05 0.98288 0.98245 0.86047 0.85870 
0.10 0.97428 0.97305 0.73395 0.72875 
0.15 0.97533 0.97330 0.61866 0.61018 
0.20 0.98780 0.98521 0.51489 0.50424 
0.25 0.01413 1.01131 0.42457 0.41336 
0.30 1.05739 1.05471 0.35122 0.34118 
0.35 1.12136 1.11915 0.29981 0.29258 
0.40 1.21056 1.20912 0.27685 0.27383 
0.45 1.33039 1.32992 0.29046 0.29272 
0.50 1.48720 1.48781 0.35060 0.35882 
0.55 1.68850 1. 69019 0.46926 0.48371 
0.60 1. 94310 1.94579 0.66083 0.68137 
0.65 2.26142 2.26490 0.94255 0.96862 
0.70 2.65571 2.65969 1.33497 1.36561 
0.75 3.14048 3.14453 1. 86271 1.89656 
0.80 3.73292 3.73650 2.55523 2.59056 
0.85 4.45344 4.45592 3.44791 3.48262 
0.90 5.32642 5.32703 4.58338 4.61507 
0.95 6.38105 6.37888 6.01319 6.03924 
1.00 7.65240 7.64648 7.79988 7.81764 
1.05 9.18286 9.17214 10.01968 10.02667 

• Present work based on the Pad. approximant of Ree and Hoover' 
for the hard-sphere compressibility. 

b Calculated by Barker and Henderson (private communication) based 

approximation. Barker and Henderson have used the 
Pade approximant of Ree and Hoover for (PV/NkT)o. 
It is also possible to use the arithmetic average of the 
two equations of state for hard-sphere system which 
were derived by Thiele8 from the Percus-Y evick inte­
gral equation by using viral and Ornstein-Zernike re­
lations, namely 

This average relation, besides having a good match with 
machine calculations as shown in Fig. 1, makes possible 
the comparison of the perturbation around the hard­
sphere Percus-Yevick equation with the Lennard­
Jones Percus-Yevick calculation.9-11 Then from (14) 
the compressibility coefficient for hard spheres is 

1 (iJP ) 
{3 iJP 0 

and 

8 E. Thiele, J. Chern. Phys. 30, 474 (1963). 
9 L. Verletand D. Levesque, Physica 36,254 (1967). 
10 D. Levesque, Physica 32, 1985 (1966). 
11 Recently, Carnahan and Starling showed that 

(PV/NkT) 0= (1+'1+'12-'13)/(1-'1)3 

(15) 

is in a better agreement with machine-calculated data for hard 
spheres than even the Pade approximant of Ree and Hoover 
while this has much simpler form than the Pade approximant. 
[N. F. Carnahan and K. E. Starling, J. Chern. Phys. 51, 635 
(1969)J. 

T*=1.00 T*=0.722 

a b a b 

0.76638 0.76307 0.61421 0.60771 
0.55279 0.54306 0.26556 0.24642 
0.35371 0.33783 -0.05970 -0.09092 
0.16702 0.14713 -0.36905 -0.40808 

-0.00661 -0.02749 -0.66510 -0.70599 
-0.16418 -0.18278 -0.94658 -0.98286 
-0.30050 -0.31374 -1.20874 -1.23434 
-0.40825 -0.41350 -1.44368 -1.45339 
-0.47792 -0.47315 -1.64034 -1. 63016 
-0.49761 -0.48151 -1.78436 -1.75165 
-0.45272 -0.42479 -1.85775 -1.80135 
-0.32559 -0.28593 -1.83845 -1. 75867 
-0.09494 -0.04457 -1.69967 -1.59825 

0.26477 0.32416 -1.40905 -1. 28911 
0.78422 0.85024 -0.92758 -0.79357 
1.50027 1.56987 -0.20825 -0.06582 
2.45731 2.52685 0.80564 0.94980 
3.70896 3.77430 2.18272 2.32113 
5.32018 5.37692 4.00621 4.13105 
7.36999 7.41376 6.37744 6.48108 
9.95486 9.98165 9.42022 9.49570 

on the Pad" approximant of Ree and Hoover for the hard-sphere compressi­
bility. and approximation of go(d. R) to nnity for R?Sd. 

III. RESULTS 

The necessary computations are performed by GE 
430 time-sharing computer. The integrations are done 
numerically by Simpson's rule and the accuracy is 
checked by changing and decreasing the interval widths 
in the integrations. Table I presents a comparison of 
the results of the present analytical formulation with the 
results of Barker and Henderson at reduced densities 
for four different isotherms. Both of the results are 
calculated by using Pade approximant of Ree and 
Hoover for the hard-sphere compressibility. The com­
pressibility coefficient of the hard spheres, and its 
derivative with respect to density, are calculated from 
(Percus-Yevick)-(Ornstein-Zernike) compressibility 
relation.4•8 As can be easily seen from Table I, the values 
of the compressibilities of Lennard-Jones (12, 6) po­
tential calculated by the present method are slightly 
lower than the values calculated by Baker and Hender­
son at high densities and are slightly closer to the ex­
perimental and machine-calculated data. The difference 
between the results of the two methods increases at 
lower temperatures. This difference could be very well 
due to the difference between the local compressibility 
and macroscopic compressibility approximations which 
are used in the two methods for the coefficient T*-2 in 
the relation of the Helmholtz free energy respectively. 

Figures 2 and 3 show the compressibility of Lennard­
Jones (12, 6) fluid as calculated by different theories 
versus density. For the perturbation curve Eqs. 14-16 
are used to compare the perturbation around the 
Percus-Yevick equation for hard spheres with the direct 
solution of Percus-Yevick equation for Lennard-Jones 
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potential. The comparison indicates that while Percus­
y evick equation for Lennard-} ones potential is as good 
as perturbation calculations for Lennard-Jones around 
hard-sphere system at high temperatures, the former 
diverges at low temperatures, while the latter does not. 
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APPENDIX 

Laplace Transform of g0(d,x)x is given by 

G(d,x) = { sL(s)e-•/[1211L(s)e-•+ S(s) ]} . 

The derivative of pG(d,x) with respect to density is 
given by 

s4e-•[s(l +71-2711) + (271+ 1)2]
f(s,17)= 

[1211L(s)e-•+S(s)]2 ' 

where 
L(S) = (l+½71)s+ (1 +211) 

and 

g/O(d,x) as a function of only real variables is: 

g/1>(J,x) = [3x(l-17)2J-1 

X[(Ho+H1+H2) exp(A1) 

+ exp(Aa) (2D1 cosA2-2D2 sinA2) ],

Ai = [211/ (l-71) ](x-1) [-1 +x+ +x_], 

A2= [211/(l-17) J(x-1) (3112/2) (x+-x-), 

A3= [211/(l-71) ](x-1)[ -1-0.S(x+ +x_) ], 

D1= Ho-0.S(H1+H2), 

D2
= (3112/2) (H1-H2), 

Ho = l+½'I/, 

H1= [ -1/471(f+¼)112] 

[x-2(1-317-4712) +x+(l-h2) ], 

H2 = [1/47](J2+U 1/2]
[x+2(1-371-47]2) +x-(1-ff) ], 

x+
= [J+(J2+k)1t2J113, 

x_= -[ IJ-J2+k 1112 J1ta, 
f= (3+371-1]2)/41,2. 




