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Based on the entropy formulation of Tsallis in the context of non-extensive statistical thermodynamics and
the fundamental works of Hill on thermodynamics of small systems (nanothermodynamics), a connection
between these two branches of thermodynamics has been made through the concept of subdivision po-
tential in small systems. Statistical mechanical expressions for the subdivision potential, chemical potential
and the partition function of small systems are derived, and the formalism for derivation of thermodynamic

properties of small systems is introduced.
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1. INTRODUCTION

Nano statistical thermodynamics is an extension of classi-
cal statistical thermodynamics, which deals with systems
consisting of finite numbers of particles/molecules. In other
words, the study of sufficiently small systems consisting of
limited assembly of molecules requires a modification of
classical statistical thermodynamics. For the study of small
systems or nanostructures, one needs detailed information
about interatomic/intermolecular forces,! 2 which deter-
mines the arrangement of particles as well as the geometry
of these nanostructures. In this report, a mathematical con-
cept has been introduced based on the principles of non-
extensive statistical mechanics in order to derive working
equations for statistical thermodynamics of small systems.
Application of this mathematical concept allows us to
derive analytic expressions for the partition function, the
subdivision potential and the chemical potential for small
systems.

It has been demonstrated that the domain of validity of
classical thermodynamics and Boltzmann-Gibbs statistics,

S= kzi‘il p; In p; (where p; is the probability of finding a

system in a microscopic state i out of total number W
of microstates), is restricted, and as a result, a good deal
of attention has been put to discuss such restrictions.® *
This branch of science is categorized in a special part of

*Author to whom correspondence should be addressed.
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thermodynamics, which is named “non-extensive thermo-
dynamics”. Non-extensive thermodynamics or thermo-
dynamics of non-extensive systems has a formalism, which
is proper for the study of complex systems that do not
exhibit extensivity.

To overcome difficulties of non-extensive systems, a
new statistics is proposed by Tsallis,® which is recently
modified.* According to Tsallis, entropy can be written by
the following equation:

w
1 _Z p! W
— i=1 —1-
5, = k—== (Zizlpi l,qeiﬁ) (1)
where k is a positive constant and W is the total number of
microscopic possibilities of the system. This expression re-

w
covers the usual Boltzmann-Gibbs entropy (S = kz_il D

In p;) in the limit of ¢ — 1. The entropic index g character-
izes the degree of non-extensivity reflected in the follow-
ing pseudo-additivity entropy rule,

S,(A + B)lk = S (A)/k + S,(B)/k
+ (1 = @IS, AVKIS (B)/K] (2)

where A and B are two independent systems. The cases
g <1,qg=1and g > 1, respectively, correspond to super-
additivity (superextensivity), additivity (extensivity) and
subadditivity (subextensivity).

On the other hand, thermodynamics of small systems
(nanothermodynamics), which has been recently become
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popular due to the fast progress in nanoscience and nano-
technology,” has faced similar difficulties as in the case of
non-extensive systems for the study of small systems.> *
Nanothermodynamics, a term which was recently intro-
duced in the literature,6’ 7 is an extension of the thermo-
dynamics for macroscopic systems, for systems consisting
of finite numbers of particles. In other words, the study of
sufficiently small systems requires a modification of ordi-
nary thermodynamics, when the thermodynamic limit is
not met. Considering the fact that small systems do not
generally satisfy the thermodynamic limit, they may be-
long to non-extensive systems.

In the present report, we propose a linkage between the
nanothermodynamics and non-extensive statistical me-
chanics in order to develop a statistical mechanical founda-
tion for nano/small systems. The starting point for this for-
mulation is the presentation of the Gibbs equation for
small systems.

1.1. The Gibbs Equation for Small Systems

According to Gibbs, for a one-component macroscopic
system consisting of N molecules (N = Nayogadro)s the
internal energy is a function of entropy, volume and the
number of molecules in the system, i.e.: U = U(S, V, N).
In differential format, this equation takes the following
form, which is the famous Gibbs equation:

dU =TdS — PdV + pudN 3)

Where u = (0U/9N)gs,y is defined as the chemical potential.

According to Hill,® for small systems (N < Nayogadro)s
we must consider the detailed geometry and structure of
the system and the fact that there exist surface forces, edge
effects, etc. In this case, it is suggested to use the following
relation for the Gibbs equation for a multi component
small system:

dU = TdS — PdV + Z;u;dN; + EdN 4)
In the above equations
E = (0UION)s.y ni Q)

E is named as the “subdivision potential”. It is a result of
contributions of surface effects, edge effects, system rota-
tion and translation, etc., all of which are appreciable in
small systems and are negligible for macroscopic systems:
the term EdN in Eq. (4) does not contribute appreciably to
large systems. But the effects just mentioned are not negli-
gible if the system under consideration consists of an
assembly of a small number of molecules. N is called the
number of non-interacting smaller systems inside the nano
system under consideration. N is a number which is gener-
ally much smaller than the number of particles (N) in the
nano system.
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Eq. 4 reduces to the following format in the case of a
one-component small system:

dU = TdS — PdV + pdN + EdN (6)
hence
U=US,V,N,N) (7
Eq. (4) can be rearranged in the following form:
dS = (1/T)dU + (PIT)dV — (u/TdN) — (E/T)dN (8)
then, upon integration, we will have
S=/T)U + (PIT)V — (WTN) — (E/T)N (©))

Through the application of non-extensive statistical me-
chanics, one can find a statistical mechanical expression
for the subdivision potential through which it makes it pos-
sible to formulate the details of the thermodynamics of
small systems. It is also possible to solve for the partition
function of small systems.

1.2. Non-Extensive Statistical Mechanics
and Thermodynamics

As mentioned above, the proposed general form of entropy
of non-extensive systems, given by Eq. (1) and the en-
tropic index ¢ (intimately related to and determined by the
microscopic dynamics), characterizes the degree of non-
extensivity of the system. On the other hand, the entropy in
Eq. (1) reduces to the usual Boltzmann-Gibbs formula,

w
§= kzizl p;In p, (10)

in the limit ¢ — 1. For ¢ # 1, S, is not extensive and gives
rise to a host of new and interesting effects (which would
be relevant for the description of thermodynamically anom-
alous systems). The difference between extensive and non-
extensive systems in Eq. (9) is the term —(E/T)N. This
term should be calculated from the difference between ex-
tensive entropy and non-extensive entropy:

—(EIT)N = K{=[1/(1 = @I'[1 = %, p{]
+2,pllnp,}, i=1->W (11)

When parameter ¢ = 1, the subdivision potential dis-
appears as it should for macroscopic systems. It can also be
shown that

—ILEIT)Ndg = —k[1/(1 = ¢/°)[1 + (1 — q)
2 pi(—1+p)], i=1->W (12)

Equations (11) and (12) constitute the statistical mechan-
ical definitions of subdivision potential. Through the
application of canonical ensemble theory of statistical
mechanics, one may be able to develop computational
techniques for subdivision potential and other properties
of nanosystems.
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Recently, Wang and co-workers® have formulated the
grand canonical partition function of a non-extensive sys-
tem in the following form:

N 1/q

Z, =1 2 expl=aB(E, = N} (13)

1

For an ideal gas, by considering Eq. (13), the partition
function will reduce to the following form:

v (2mmir Y]
o)
Now, let us introduce the configurational integral as,

. B 1/q
z, =z;gU...Je 4, ...drN] W)

Based on the well-known equation,
dlnZ
U, = —(—n ) (16)
aB NV
we can write the chemical potential in the following form,
p=G,/N=[U,+ PV—TS]IN (17)

Therefore, we are at the position that we can develop an
equation for subdivision potential by using Eqgs. (6), (8),
(10) and (13)—(16) as follows,

Pnew = M(Bgq) + ENIN (18)

It is seen that for conventional (extensive) systems in which
g = 1, we have E = 0, and this is quite in agreement with
the basic arguments in non-extensive thermodynamics.

With the availability of analytic expressions for the chem-
ical potential and subdivision potential of nanosytems, it
is now possible to attempt to predict phase transitions in
nanosystems,& 9 which are a basic science behind molecu-
lar self replication.'® !
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